发现了一种新型的光诱导分子内电荷转移机制,

作者:巴黎人-人群养生

细菌翻译延伸因子EF -

在大多数生物体中细胞内合成的泌蛋白和膜蛋白,通常需要借助特异的转运机制到达细胞内外特定的区域才能发挥其重要的功能。分泌蛋白是那些最终要离开细胞的蛋白,例如抗体。膜蛋白是插入到细胞膜的蛋白,例如信号受体。在蛋白定位及转运过程中有一个特殊的分子复合物起着极其重要的作用。它是由活跃的核糖体(细胞内的蛋白合成机器)与信号识别颗粒以及其相应的受体组成的特殊复合体。在新研究中欧洲分子生物实验室的科学家们第一次针对这一特殊的分子复合体进行了结构成像分析。“SRP受体在蛋白质的合成和释放中起着重要作用,”研究的负责人Christiane Schaffitzel说:“在新研究中我们第一次在分子水平上观察到蛋白质释放的过程及机制。”

大连化物所分子探针与荧光成像徐兆超研究员团队长期致力于荧光分子科学与工程研究,开展“标记-探针-成像”以荧光分子发光构效关系为核心,以“实验/理论”相结合的模式深刻理解和探索分子发光机理,工程化创制高性能新型荧光分子,研究团队与新加坡科技设计大学刘晓刚教授合作,在前期获得高荧光强度和光稳定性系列新型荧光染料的基础上,发现了一种新型的光诱导分子内电荷转移机制,命名为“分子内扭转电荷穿梭”(Twisted Intramolecular Charge Shuttle, TICS)。

4月13日,记者了解到,中国科学院大连物化研究所分子探针与荧光成像研究组徐兆超研究员团队长期致力于荧光分子科学与工程研究,针对生物单分子检测和超高时空动态分辨的前沿需求,开展“标记-探针-成像”一体化研究。该团队以荧光分子发光构效关系为核心,以“实验/理论”相结合的模式深刻理解和探索分子发光机理,工程化创制高性能新型荧光分子,并于近期取得了一系列新进展。

多重耐药细菌感染已成为病患发生严重并发症和死亡的主因之一。临床上快速、有效的耐药菌诊断技术将十分有助于患者获得及时的治疗。

Tu。当供体被特定波长的光照射时,光将被吸收并转换成新波长的光。如果光非常接近供体,受体将捕获光并以第三波长重新发射。透射光在共聚焦显微镜中测量,由此EF

Tu分子中供体和受体之间的距离可以为溶液中的数千个分子确定,从而提供关于EF

  • Tu的动态方面的信息。

GTPases远比想象中的更有活力

研究表明,解中的EF -

核心提示:近日法国欧洲分子生物学实验室的科学家首次确定了在新合成蛋白质转运过程中发挥重要作用的一个“核糖体-蛋白质”复合物的结构。研究结果发表在近期的《自然—结构与分子生物学》(Nature Structural and Molecular Biology)杂志上。

此外,研究团队还提出了变型荧光传感器的概念,改变传统荧光探针的“一把钥匙开一把锁”的主客体识别模式为具有类似万能钥匙的分子实验室功能(lab-on-a-molecule)模式,即一个探针分子就可以识别区分众多的分析物,实现了多种临床耐药菌的鉴定。

此外,徐兆超团队还提出了变型荧光传感器的概念,改变传统荧光探针的“一把钥匙开一把锁”的主客体识别模式为具有类似万能钥匙的分子实验室功能模式,即一个探针分子就可以识别区分众多的分析物,实现了多种临床耐药菌的鉴定。

此外,研究团队还提出了变型荧光传感器的概念,改变传统荧光探针的“一把钥匙开一把锁”的主客体识别模式为具有类似万能钥匙的分子实验室功能(lab-on-a-molecule)模式,即一个探针分子就可以识别区分众多的分析物,实现了多种临床耐药菌的鉴定。

本文由巴黎人app397997发布,转载请注明来源

关键词: